Mitochondrial Complex I Function Modulates Volatile Anesthetic Sensitivity in C. elegans

نویسندگان

  • Marni J. Falk
  • Ernst-Bernhard Kayser
  • Philip G. Morgan
  • Margaret M. Sedensky
چکیده

Despite the widespread clinical use of volatile anesthetics, their mechanisms of action remain unknown [1-6]. An unbiased genetic screen in the nematode C. elegans for animals with altered volatile anesthetic sensitivity identified a mutant in a nuclear-encoded subunit of mitochondrial complex I [7,8]. This raised the question of whether mitochondrial dysfunction might be the primary mechanism by which volatile anesthetics act, rather than an untoward secondary effect [9,10]. We report here analysis of additional C. elegans mutations in orthologs of human genes that contribute to the formation of complex I, complex II, complex III, and coenzyme Q [11-14]. To further characterize the specific contribution of complex I, we generated four hypomorphic C. elegans mutants encoding different complex I subunits [15]. Our main finding is the identification of a clear correlation between complex I-dependent oxidative phosphorylation capacity and volatile anesthetic sensitivity. These extended data link a physiologic determinant of anesthetic action in a tractable animal model to similar clinical observations in children with mitochondrial myopathies [16]. This work is the first to specifically implicate complex I-dependent oxidative phosphorylation function as a primary mediator of volatile anesthetic effect.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subcomplex Iλ Specifically Controls Integrated Mitochondrial Functions in Caenorhabditis elegans

Complex I dysfunction is a common, heterogeneous cause of human mitochondrial disease having poorly understood pathogenesis. The extensive conservation of complex I composition between humans and Caenorhabditis elegans permits analysis of individual subunit contribution to mitochondrial functions at both the whole animal and mitochondrial levels. We provide the first experimentally-verified com...

متن کامل

Altered Anesthetic Sensitivity of Mice Lacking Ndufs4, a Subunit of Mitochondrial Complex I

Anesthetics are in routine use, yet the mechanisms underlying their function are incompletely understood. Studies in vitro demonstrate that both GABA(A) and NMDA receptors are modulated by anesthetics, but whole animal models have not supported the role of these receptors as sole effectors of general anesthesia. Findings in C. elegans and in children reveal that defects in mitochondrial complex...

متن کامل

Tail clamp responses in stomatin knockout mice compared with mobility assays in Caenorhabditis elegans during exposure to diethyl ether, halothane, and isoflurane.

BACKGROUND The gene unc-1 plays a central role in determining volatile anesthetic sensitivity in Caenorhabditis elegans. Because different unc-1 alleles cause strikingly different phenotypes in different volatile anesthetics, the UNC-1 protein is a candidate to directly interact with volatile anesthetics. UNC-1 is a close homologue of the mammalian protein stomatin, for which a mouse knockout w...

متن کامل

An evolutionarily conserved presynaptic protein is required for isoflurane sensitivity in Caenorhabditis elegans.

BACKGROUND Volatile general anesthetics inhibit neurotransmitter release by an unknown mechanism. A mutation in the presynaptic soluble NSF attachment protein receptor (SNARE) protein syntaxin 1A was previously shown to antagonize the anesthetic isoflurane in Caenorhabditis elegans. The mechanism underlying this antagonism may identify presynaptic anesthetic targets relevant to human anesthesia...

متن کامل

A stomatin and a degenerin interact in lipid rafts of the nervous system of Caenorhabditis elegans.

In Caenorhabditis elegans, the gene unc-1 controls anesthetic sensitivity and normal locomotion. The protein UNC-1 is a close homolog of the mammalian protein stomatin and is expressed primarily in the nervous system. Genetic studies in C. elegans have shown that the UNC-1 protein interacts with a sodium channel subunit, UNC-8. In humans, absence of stomatin is associated with abnormal sodium a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2006